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SUMMARY

Legionnaires’ disease (LD) is an often severe and potentially
fatal form of bacterial pneumonia caused by an extensive list of
Legionella species. These ubiquitous freshwater and soil inhab-
itants cause human respiratory disease when amplified in man-
made water or cooling systems and their aerosols expose a sus-
ceptible population. Treatment of sporadic cases and rapid
control of LD outbreaks benefit from swift diagnosis in concert
with discriminatory bacterial typing for immediate epidemio-
logical responses. Traditional culture and serology were instru-
mental in describing disease incidence early in its history; cur-
rently, diagnosis of LD relies almost solely on the urinary
antigen test, which captures only the dominant species and
serogroup, Legionella pneumophila serogroup 1 (Lp1). This has
created a diagnostic “blind spot” for LD caused by non-Lp1
strains. This review focuses on historic, current, and emerging
technologies that hold promise for increasing LD diagnostic
efficiency and detection rates as part of a coherent testing reg-
imen. The importance of cooperation between epidemiologists
and laboratorians for a rapid outbreak response is also illus-
trated in field investigations conducted by the CDC with state
and local authorities. Finally, challenges facing health care pro-
fessionals, building managers, and the public health commu-
nity in combating LD are highlighted, and potential solutions
are discussed.

INTRODUCTION

In the summer of 1976, the Centers for Disease Control and
Prevention (CDC) in Atlanta, GA, responded to a sudden, ex-

plosive epidemic of febrile illness with pneumonia among attend-
ees of the American Legion conference in Philadelphia, PA (1).
With heightened public awareness due to “swine flu” earlier that
year and mass vaccinations potentially on the way (2), front-page
headlines dubbed this new threat “Legionnaires’ disease” (LD)
(3). A total of 32 people, with at least 20 epidemiologists, led by
David Fraser, were mobilized from the CDC, the largest team sent
to the field for any outbreak in the center’s history to that date, to
work with local and state agencies (4). The investigation uncov-
ered 221 suspected cases of this unusual respiratory disease from
conference attendees and bystanders in and around the conven-
tion hotel (including cases originally labeled “Broad Street pneu-
monia”); ultimately, 34 individuals died (5, 6). Amid widespread
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speculation on the nature of this idiopathic disease, scientists
ruled out toxicity from �30 heavy metals and infection by 77
known pathogens; however, attempts at growing the culprit or-
ganism on 14 different media and in 13 virologic hosts were ini-
tially unsuccessful (7). By December of that year, Joseph McDade
and coworkers isolated what proved to be a new genus of bacteria
from guinea pigs exposed to patient lung tissue, subsequently
naming it Legionella for the American veterans’ association (i.e.,
the American Legion) (7–9). Culturing and detection of Legionella
were originally hampered by fastidious growth requirements and
variable bacterial staining in infected tissues (2, 6, 10), but once
the organism was isolated, scientists at the CDC developed tools
and methods to reexamine historical collections and past out-
breaks with similar presentations. Those scientists found clinically
associated Legionella isolates from as far back as 1947 (11, 12) as
well as patient seroconversion in two previously unsolved disease
clusters: the first was in Washington, DC, in 1965, where 14 of 81
infected individuals died (7, 13), and the second was a nonpneu-
monic outbreak that occurred in Pontiac, MI, in 1968, where no
deaths were reported among 144 cases (7, 14). The latter condition
became the clinically and epidemiologically distinct “Pontiac fe-
ver,” an acute, shorter-duration, self-limiting, flu-like illness with
a high attack rate, which accounts for �1% of Legionella infections
reported in the United States (6, 10, 15). The term “legionellosis”
is commonly used to describe both the pneumonic and nonpneu-
monic forms of this disease. As we now know, these two syn-
dromes may coexist within an exposed population (Fig. 1) (16–
18), but it is unclear whether Pontiac fever is one potential
outcome in the spectrum of disease severity or whether it is due to
the presence of nonviable legionellae, amoebal pathogens, and/or
high levels of bacterial endotoxin (19–23).

The 1976 Philadelphia outbreak spurred the swift development
of serological methods for LD diagnosis and laboratory tech-
niques for cultivating and isolating the bacterium. Today, many of
these original diagnostic tests are still commonly used in labora-
tories; however, current and emerging proteomics- and nucleic
acid-based methods afford significant improvements and ex-
panded capabilities in this area. The goals of this review are to (i)
briefly provide background for the physiology and ecology of le-
gionellae, (ii) examine the historical and current state of Legionella
detection and diagnosis in clinical and nonclinical laboratory set-
tings and identify gaps and areas in need of improvement or mod-
ernization, (iii) highlight advances in molecular-based detection
methodologies developed in the last decade that are being applied
and implemented in clinical and research settings, (iv) describe
recent and past Legionella outbreaks to capture their complexities
and diversity while emphasizing the importance of cooperation
between epidemiologists and laboratorians during these intensive
investigations, and (v) discuss current challenges facing health
care professionals and administrators, facility managers, public
health officials, and laboratorians in addressing rising LD rates in
the coming decades.

PHYSIOLOGY AND ECOLOGY

Legionellae are aerobic, Gram-negative, non-spore-forming gam-
maproteobacteria. Legionella pneumophila, the most widely stud-
ied species, undergoes a phenotypically distinct biphasic life cycle
that alternates between a nonmotile, replicative phase and a viru-
lent, flagellated, transmissive phase (23–25). The bacterium dis-
plays dramatic pleomorphism, demonstrating coccoid, bacillary

(�0.3- to 0.6-�m by �3-�m), and/or long filamentous (�8- to
50-�m) forms that are influenced by temperature, available nu-
trients or metabolites, growth environment (e.g., inside amoe-
bae), and medium type (7, 23, 26–29). Legionella spp. are ubiqui-
tous in freshwater habitats, including rivers, lakes, streams, ponds,
hot springs, and subsurface waters, and are naturally part of mi-
crobial ecosystems (Fig. 1) (30–33). Several species have also been
recovered from composts and potting mixes in the United States,
Australia, and the United Kingdom and in the soil of Thai farm-
land (34–41). At present, there are �56 distinct Legionella species
(and many unnamed species) encompassing at least 70 sero-
groups, approximately half of which have been isolated from, or
detected in, clinical specimens, but all species are regarded as po-
tential human pathogens (42, 43).

In the environment, legionellae can be associated with complex
biofilm communities, where the bacterium likely transitions to a
motile, planktonic stage; all legionellae studied have the ability to
infect and replicate inside freshwater amoebae, which commonly
consume biofilms (44–49). The fastidious in vitro nutritional re-
quirements of L. pneumophila (27, 50) originally contradicted
findings of its recovery from low-nutrient, highly competitive,
polymicrobial environments (23, 31, 51, 52). However, it soon
became clear that the unique physiology of legionellae was pri-
marily adapted for survival and replication within numerous
protozoan genera, including Acanthamoeba, Naegleria, Hartman-
nella, and Tetrahymena (24, 53, 54), and secondarily as a free-
living or biofilm-associated aquatic bacterium. Their association
with amoebae, in the vegetative or cyst form, may induce virulent
bacterial phenotypes, assist in distribution, and provide protec-
tion from harsh or bactericidal environmental conditions, such as
excessive heat and chlorine (55–65).

Legionellae thrive in tepid water (25°C to 37°C) but may prop-
agate at temperatures above and below this range and may even
survive at growth-restrictive temperatures of �20°C and �55°C
(66, 67). A recent controlled, pilot-scale hot water distribution
study confirms what many hospital, hotel, and cruise ship opera-
tors have reported: legionellae may persist and quickly recolonize
potable water networks even after multiple rounds of heat shock
(70°C for 30 min) and biocide treatment (68). An extensive col-
lection of case studies and research articles dating back �30 years
demonstrates the adaptability and potential of legionellae to col-
onize man-made aquatic environments (Fig. 1), from the initial
point of water treatment (69–73) to private homes (74–78), hos-
pitals (79–83), restaurants (84, 85), bath houses (86–89), hotels
(90–92), and, eventually, wastewater facilities (93, 94). These
studies underscore the resiliency and persistence of legionellae.

EPIDEMIOLOGY AND DISEASE

Legionnaires’ disease is a respiratory illness caused by inhalation
of Legionella-containing aerosols generated by showers, faucets,
air-conditioning cooling towers, whirlpool spas, and fountains,
among others (Fig. 1). Legionellae are frequently isolated from
natural waters, but these sources are typically not implicated in
direct transmission, with one possible exception being natural hot
springs adapted for human bathing, such as public baths, which
are popular in Japan and Taiwan, among other locations (86, 95–
101). Aspiration of water containing Legionella has also been sug-
gested to be a common transmission route (102), although the
frequency with which this occurs is unclear. Reports have sug-
gested that immunocompromised patients in health care settings
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may be at risk from contaminated respiratory equipment (103–
108); in these specific instances, the use of sterile potable water
may be advised (109–111).

Humans are considered incidental (and dead-end) hosts,

whereby legionellae infect and replicate within alveolar macro-
phages. The resulting illness may manifest as a febrile disease
characterized by pneumonia and possible bacteremia (112–
115). Together, Legionella spp., Mycoplasma pneumoniae, and

FIG 1 Route of Legionella dissemination from natural waters to development of Legionnaires’ disease and/or Pontiac fever. Legionella from freshwater sources
(1) is distributed at low concentrations from points of water purification (2) to colonize downstream local plumbing networks and cooling systems (among other
sites) (3) and amplifies under permissive environmental conditions (4). Subsequent aerosolization (5) exposes a human population, which may include
individuals with increased susceptibility (6), leading to a potential disease spectrum. More susceptible individuals (due to age or underlying medical conditions)
are at a higher risk of LD than those less susceptible, and both groups are at risk for Pontiac fever. The route of LD caused by contaminated soil is less well
understood but also appears to involve aerosol exposure.

Legionella Diagnostics and Detection

January 2015 Volume 28 Number 1 cmr.asm.org 97Clinical Microbiology Reviews

http://cmr.asm.org


Chlamydophila pneumoniae represent the “atypical” branch (i.e.,
not Streptococcus) of nonzoonotic bacterial respiratory pathogens,
responsible for �22% of cases of community-acquired pneumo-
nias (CAP) in the United States and Canada and up to 28% of
cases worldwide (116). Legionellae alone are responsible for at
least 8,000 to 18,000 hospitalizations every year in the United
States, accounting for 2 to 9% of all pneumonias, a statistic also
reflected in international studies (e.g., CAPNETZ), and yet, it may
be an underestimation (116–119). The majority of LD cases occur
in the summer and fall and more commonly affect males �50
years of age who have lung disease or immunosuppression (Fig. 1)
(15, 82, 120, 121). Additional risk factors for legionellosis include
smoking; recent travel; and underlying medical conditions such as
diabetes, cancer, AIDS, end-stage renal disease (121, 122), and,
potentially, human cellular Toll-like receptor 6 (TLR6) mutations
(123). Notably, the reported LD incidence has increased substan-
tially since 2000 for all age groups and U.S. geographic regions,
with the median age for disease trending younger between 1990
and 2005 (15, 124–126). While this increase may in part reflect a
true rise in the number of LD cases, a combination of factors may
be contributing, including increased diagnostic testing, changes in
case reporting methods, and expansion of the vulnerable elderly
population. The influence of changes to national water quality
standards or adjustments in medical insurance reimbursement
patterns is likely minimal (15, 124). Interestingly, sporadic LD has
been linked to higher-than-average atmospheric temperatures
and increased rainfall (or humidity) in several studies, and while a
mechanism is not clear, standing road water may play some part in
infection (127–134). A similar increase in the overall European LD
incidence has also been documented over the past 20 years but
with a possible plateau being reached in the late 2000s (120, 135).

Clinical and radiographic presentations of LD are virtually in-
distinguishable from those of other, more common forms of
pneumonia (136). Rapid, laboratory-based or point-of-care
(POC) testing is crucial for accurate diagnosis and improved de-
tection of LD outbreaks, and it allows for confirmation of LD-
inclusive empirical treatment, changes in drug dosage or duration,
or targeting of alternative antibiotics active against Legionella spp.
(10, 137–139). In addition, despite the sensitivity of L. pneumo-
phila to commonly available antibiotics, LD is associated with
greater CAP severity and a higher case-fatality rate (up to �30%)
than CAP from other atypical pathogens (121, 140–145). The U.S.
LD case-fatality rate has decreased steadily since the mid-1980s
(125), from a high of �34% to 8% on average in the 2000s (15).
Although European LD case-fatality data were not compiled be-
fore the mid-1990s, current estimates place these rates on par with
those for the United States during the previous decade (135, 146–
149). L. pneumophila serogroup 1 (sg1 or Lp1) is responsible for
70 to 92% of laboratory-detected legionellosis cases in the United
States and Europe and �50% of the cases in Australia (120, 125,
150). The remaining species and L. pneumophila serogroups, such
as L. pneumophila sg6, L. longbeachae, L. micdadei, and L. bozema-
nii [sic], account for most of the remaining disease, with the ex-
ception that L. longbeachae is the source of �30 to 55% of LD cases
in Australia and New Zealand; however, proportions vary greatly
depending on the state or territory (119, 125, 150–152).

Generally, the high percentage of Lp1 clinical cases is not re-
flected in the local environmental distribution of Legionella.
Indeed, seroprevalence studies in many countries have demon-
strated potential ongoing exposure to diverse Legionella sero-

groups and species, which typically contrasts with the greater clin-
ical prevalence of Lp1 (153–160). As such, substantial effort has
been devoted to characterizing Lp1 virulence determinants, such
as secreted effectors or surface factors. The Lp1 lipopolysaccharide
(LPS) serves as the basis for traditional serogrouping, and it con-
tains a virulence-associated epitope (recognized by monoclonal
antibody 2 [MAb2] or MAb3/1 of the internationally used mono-
clonal panels) which is dependent on a functional lag-1 gene for
synthesis (161, 162). This LPS modification is strongly associated
with Lp1 clinical disease and predominates in outbreak strains but
is less frequently found in environmental Lp1 isolates (163–166;
CDC, unpublished data). At present, it is not completely under-
stood why this single serogroup and the lag-1 genotype are re-
sponsible for the majority of clinical cases; potentially, some
strains of Legionella may be especially pathogenic to humans, eas-
ily aerosolized, or more suited to colonization of anthropogenic
water distribution systems (33, 163–170). One notable exception
to the dominance of lag-1-expressing strains in LD cases is the Lp1
OLDA/Oxford (lag-1-negative) subgroup, which currently makes
up 43% of all clinical isolates in Israel (171).

Unlike Mycoplasma and Chlamydophila, person-to-person Le-
gionella transmission has never been reported, and community-
acquired legionellosis is typically associated with man-made
structures that generate water aerosols (Fig. 1), such as fountains
(84, 85, 172–176), building water systems (75, 79, 177–184), cool-
ing towers (185–193), and whirlpool spas (194–198), among
others. U.S. surveillance data from 2001 to 2010 have consistently
included Legionella as one of the leading causes of drinking water-
associated outbreaks, accounting for 58% of cases in 2010 (199).
While large-scale outbreaks, such as the 1976 Philadelphia epi-
demic or the recent and likely recurring Pittsburgh Veterans
Health Administration Hospital incident (200, 201), attract na-
tional attention, the majority of LD cases are isolated and spo-
radic; from 2000 to 2009, outbreak-associated LD accounted for
only 4% and 9.3% of all legionellosis cases reported in the United
States and Europe, respectively (15, 114, 135, 146–149). Domestic
and international travel-related disease is an increasingly recog-
nized and significant category of infection; travel-associated legio-
nellosis represented 19 to 24% of LD cases reported in the United
States and Europe during the previous decade (15, 135, 146–149,
202, 203), with Lp1 predominating in both regions (204–213).

DETECTION AND DIAGNOSIS

Procedures for the diagnosis and management of LD require im-
portant methodological distinctions from the identification of
Legionella spp., serogroups, and sequence types (STs) for epide-
miological investigations. While complementary, these related ac-
tivities serve different objectives. Properly informed LD treatment
does not necessitate discrimination beyond the genus level be-
cause all Legionella species tested are sensitive to commonly pre-
scribed macrolides and fluoroquinolones (e.g., azithromycin and
levofloxacin), which are active against and recommended for
community- and hospital-acquired infections (214–220). Unlike
CAP caused by M. pneumoniae or Streptococcus pneumoniae, ac-
quired antibiotic resistance has never been reported for any Legio-
nella strain, although a recent study reported a single clinical iso-
late displaying azithromycin and ciprofloxacin resistance outside
the wild-type range (221–223). A follow-up study detailing the
molecular basis for this resistance was not able to determine if
mutations (in the gyrA gene) arose before or after the antibiotic
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was administered (224). Of particular interest, a next-generation
macrolide (the first fluoroketolide), solithromycin, is currently in
phase III clinical trials and, at least in vitro, appears to be highly
active against Lp1 (225). In contrast, while timely processing is
still important, epidemiological investigations that link one or
more disease cases to common environmental exposures must
employ more thorough approaches for identifying shared phylog-
enies between clinical and environmental strains. These tech-
niques may include traditional antibody-based assays or more re-
cently developed nucleic acid amplification tests (NAATs), such as
PCR.

Early in the field’s history, a limited set of culture- and anti-
body-based methods was used for both clinical and epidemiolog-
ical investigations (e.g., direct fluorescent-antibody [DFA] assay);
the later commercial development and widespread adoption of a
Legionella urine antigen test (UAT) largely eliminated many of
these assays from the clinical repertoire. Fortunately, nucleic acid
molecular technologies introduced in the late 1980s and early
1990s, such as PCR and DNA sequencing, proved valuable for
advancing both LD diagnostic and epidemiological capabilities
(21, 226–229). Current LD case classification is based upon a com-
bination of factors, including displaying clinically compatible
symptoms (e.g., fever, myalgia, cough, and pneumonia), support-

ing epidemiological information, and positive laboratory findings
(Fig. 2). In the United States and Europe, a positive laboratory
result from a UAT, bacterial culture, and/or paired serology (i.e.,
indirect fluorescent-antibody [IFA] assay or enzyme-linked im-
munosorbent assay [ELISA]) for Lp1 defines a clinical case. Fur-
thermore, detection of Legionella antigen or whole bacteria in
respiratory secretions, tissues, or fluids by DFA, detection of
seroconversion (4-fold or higher increase in titer) to non-sg1 se-
rogroups, non-pneumophila Legionella species, or multiple species
using pooled antigens, and/or detection of Legionella nucleic acid
supports a suspected or probable case in the United States (230–
233). Definitions for a probable case assignment in the European
Union differ slightly from those in the United States, because Eu-
ropean standards do not specify the minimum titer increase for
seroconversion and they allow a single high antibody titer for as-
sessing disease status.

Prospective and retrospective epidemiological studies may also
use these case-defining laboratory techniques in addition to slide/
serum/latex agglutination methods, monoclonal antibody (MAb)
typing, and nucleic acid molecular methods such as mip gene se-
quencing, sequence-based typing (SBT) (234, 235), and/or PCR,
both conventional and real time. Evidenced by its popularity in
the peer-reviewed literature, Legionella nucleic acid detection is

FIG 2 Specimen types, diagnostic tests, and anatomical locations for determining a potential current or recent Legionella infection. Some assays are applicable
to multiple specimen types, such as culture and nucleic acid amplification. In general, the success of detecting Legionella is dependent on the severity of disease,
specimen integrity, technical proficiency of the laboratory, and particular test characteristics, as listed in Table 1. Additional recent emerging methods and
technologies may also be used, such as mass spectrometry, but they may not be widely available or accessible. Note that Legionella infection at extrapulmonary
sites, such as soft tissues or organs (e.g., spleen and heart), is rare.
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being increasingly recognized, standardized (236), and imple-
mented in the laboratory for rapid LD diagnostics and detection.
The following sections detail the major categories of Legionella
tests (Fig. 2) offered in clinical settings and at reference laborato-
ries such as the CDC, emphasizing their purpose, benefits, and
drawbacks as well as highlighting emerging technologies and pro-
cedures (Table 1). Information for clinicians and health depart-
ments, preferred diagnostic assays and collection procedures, and
detailed protocols for most environmental techniques de-
scribed here can be found on the CDC Legionella website, as
listed in Table 3.

Microbiological Culture

Culture and isolation remain the “gold standard” for Legionella
detection and LD diagnosis (51, 114). Acceptable culture speci-
mens include those from the lower respiratory tract, such as spu-
tum, pleural fluid, bronchial aspirates, and bronchial alveolar la-
vage (BAL) fluid (Fig. 2) (237). Lung tissue and biopsy specimens
are also appropriate for attempting culture. Less conventional
specimens include those from extrapulmonary sites, such as soft
tissues, joint fluids, and blood (51, 113, 238). Reports of Legionella
infection at these sites are rare, as is recovery of an isolate. In these
instances, culture should be attempted only when other etiologies
have been ruled out. Among all potential specimens for culture,
sputum is generally most commonly sought, although a signifi-
cant proportion of LD patients produce little or no sputum for
culture analysis (51, 239). The sensitivity of detection of Legionella
by culturing of clinical specimens is highly variable, ranging from
�10% to 80%, and recovery is dependent on the sample type as
well as the experience and technical proficiency of laboratory per-
sonnel (239). Legionellae grow on several types of complex artifi-
cial media; however, the most successful medium and procedure
include buffered charcoal yeast extract (BCYE) agar containing
0.1% �-ketoglutarate with L-cysteine incubated at 35°C in a hu-
midified, 2.5% CO2 atmosphere (50, 240, 241). Most isolates
demonstrate growth in 3 to 5 days, but non-pneumophila Legion-
ella species and occasionally primary-specimen isolates may re-
quire considerably longer incubation times, sometimes up to 2
weeks (238, 242, 243). Despite extended growth periods, obtain-
ing an isolate provides numerous advantages in allowing greater
characterization and further epidemiological studies.

Not surprisingly, it is generally easier to isolate bacteria from
patients with severe LD (due to increased bacterial burden) (119),
and several methods can be employed to isolate Legionella from
nonsterile specimens, such as sputum, or from heavily contami-
nated environmental sources, such as air-conditioning cooling
towers (239, 244). Semiselective procedures enhance Legionella
recovery in the presence of competing flora (from both clinical
and environmental samples), including brief acid and heat expo-
sure and/or the addition of glycine, polymyxin B, cycloheximide,
and vancomycin to the growth media, to which legionellae are
naturally resistant. Most legionellae are cysteine auxotrophs (the
exceptions being L. oakridgensis, L. jordanis, and L. nagasakiensis,
all of which may adapt to cysteine-deficient media after serial pas-
sage [245, 246]); thus, cysteine biplates can be used to quickly
screen potential Legionella-like colonies (50). To date, at least 16
named and 6 undesignated species exhibit yellow-green, blue-
white, or red-pink autofluorescence under long-wave (365-nm)
UV light (238, 247–251; CDC, unpublished) when cultivated on
BCYE or non-charcoal-containing medium. Most reported cases

of LD are associated with L. pneumophila; however, currently, 8 of
the 12 named species exhibiting blue-white and red fluorescence
are also linked to human disease (81, 249, 252–256). Therefore,
even uncommon environmental species should be considered po-
tential human pathogens, especially for at-risk populations.

Clinical and hospital-based laboratories are a critical link in the
chain of Legionella detection, diagnosis, and possible remediation.
Ideally, attempting Legionella culture in all suspected cases for
confirmation and further analyses should be the desired goal
(214). Additionally, the concomitant development of alternative,
culture-independent diagnostics should continue. Given its cen-
tral role in LD investigations, the ongoing exchange of training
and knowledge is encouraged, to sustain Legionella culture profi-
ciency in the laboratory, especially since a sharp decline in the
frequency of culture diagnosis has been reported in the United
States, from �60% in the early 1990s to 5% on average from 2005
to 2009 (15, 125). The remarkable lack of laboratory expertise for
Legionella isolation was confirmed by a College of American Pa-
thologists survey, in which one-third of clinical laboratories were
unable to grow a pure Legionella culture (138). The European
Union has also experienced a large drop in overall culture-based
detection, from 18% in 1996 to 12% in 2011 (120, 257). These
statistical averages can be misleading since culture recovery can
vary significantly among European Union member states. For in-
stance, from 2007 to 2008, LD was diagnosed by culture in Spain
and Italy in 0.45% and 1.7% of cases, respectively, while a higher
culture confirmation rate of 15 to 40% was reported in Austria,
France, Denmark, and the Netherlands (135, 203). A concerted
effort by laboratorians and administrators is clearly needed to
improve culture-based confirmation practices, preferably in con-
junction with other tests based on nucleic acid amplification or
UATs.

Until recently, there was no formal external laboratory accred-
itation program in the United States for environmental Legionella
detection, making it difficult to assess the competency and profi-
ciency of testing laboratories. To fill this gap, the CDC established
the Environmental Legionella Isolation Techniques Evaluation
(ELITE) program (see Table 3) (258). This free program, which
began in late 2008, enables commercial, governmental, and hos-
pital-based laboratories in the United States and abroad to evalu-
ate their Legionella isolation techniques by using standardized,
blind samples. Certification as an ELITE member requires bian-
nual proficiency testing, whereby laboratories must successfully
isolate and identify Legionella from heterogeneous aqueous mix-
tures. There are also similar programs in Europe for assessment of
competency in the detection of Legionella in water samples (such
as the “Legionella Scheme” administered by the Health Protection
Agency of the United Kingdom). Given the complexity of patient
specimens and existing regulatory oversight, there is no equivalent
U.S. proficiency program specifically for clinical laboratory Legio-
nella culture; however, third-party proficiency testing and certifi-
cation for clinical bacteriology laboratories, required by the Clin-
ical Laboratory Improvement Act (CLIA), may include Legionella
as an unknown for culture and identification.

Urinary Antigen Test

The UAT has dramatically outpaced other laboratory methods for
diagnosis, representing 82% and 97% of the diagnostic tools used
for LD confirmation in Europe and the United States, respectively
(15, 125, 144, 146, 257). The popularity and ubiquity of the UAT
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are attributed to its speed, relatively low cost, uncomplicated pro-
cedure, ease of sample collection, commercial availability, and
FDA clearance (CE marking in the European Union). Legionella-
specific urinary antigens can be detected in the majority of L.
pneumophila infections shortly after clinical symptoms appear (2
to 3 days) and may be excreted for several days to �10 months,
even during antibiotic treatment and after disease resolution (244,
259, 260). For most cases, however, Legionella antigen is no longer
detected in urine 1 to 2 months after therapy. The UAT was ini-
tially an in-house method for Legionella antigen detection (261–
263) and was commercially developed as a radioimmunoassay in
the late 1980s and early 1990s (264, 265).

Currently, the Legionella UAT is available from several vendors
in two main formats: a 96-well plate-based enzyme immunoassay
(EIA), or an ELISA, and a rapid, immunochromatographic test
(ICT), in a card- or strip-based format, similar to a home preg-
nancy test (also known as a lateral-flow test). The most commonly
used rapid ICT and EIA formats are highly specific for L. pneumo-
phila (between 95 and 100%), with sensitivities from 70 to 90%,
depending on whether urine is artificially concentrated; however,
only five tests are FDA cleared for sale in the United States (Alere
BinaxNOW Legionella urinary antigen card, Binax Legionella uri-
nary antigen EIA, SAS Legionella test, Bartels Legionella urinary
antigen ELISA, and Meridian Tru Legionella) and only for the
detection of Lp1 (http://www.fda.gov/) (266–269). It is widely
recognized that EIAs from some manufacturers exhibit cross-re-
activity for various non-sg1 L. pneumophila serogroups and thus
may detect a wider variety of pathogens. However, sensitivities
among commercially available tests for non-Lp1 LD are highly
variable and generally much lower than those for Lp1-associated
disease when assayed with urine from patients with confirmed LD
(267, 270–275). Importantly, the sensitivities of most similar-for-
mat UATs are generally equivalent, regardless of the manufacturer
(267–269, 276–279), and they all allow for rapid assessment and
patient treatment (280–282), unlike culture or serology, which
may take days to weeks (139). Overall, the card-based ICT is a
rapid, simple, qualitative assay for basic laboratory or POC use,
while the EIA format is quantitative, may offer comparatively
higher sensitivity and specificity, and is more suited for larger
clinical, reference, or research laboratories (283).

Over the past 30 years, the development and implementation of
UATs have greatly benefited LD patients by significantly improv-
ing diagnosis rates and thus allowing timely treatment (146, 257,
280). The LD-associated mortality rate decreased dramatically
(�77%) in the United States from 1985 to 2009, along with a rapid
increase in DFA and culture-based detection in the early 1980s,
the mainstream introduction of the Legionella UAT (in the 1980s
and 1990s), and updated guidelines (in the 1990s) by the Ameri-
can Thoracic Society and the Infectious Diseases Society of Amer-
ica for coverage of Legionella in empirical antibiotic therapy for
CAP (15, 125, 284, 285). Several developments may have contrib-
uted to this changing diagnostic and treatment landscape, includ-
ing standardized Legionella growth media, more readily available
and sensitive DFA reagents, novel and rapid urine-based assays,
and greater LD awareness by health care practitioners; additional
data suggest that the superior sensitivity of the UAT over that of
culture may have also allowed the detection of cases with milder
disease and an inherently higher survival rate (125). In parallel
with declining mortality, disease attributed to non-sg1 and non-
pneumophila Legionella species decreased by 79% (125), suggest-

ing that Lp1 is overrepresented in current estimates of LD. While
the Legionella UAT is a valuable tool, sole reliance on this one
diagnostic test may result in significant numbers of undetected LD
cases (51, 125, 271). It is unclear whether this dramatic decrease in
non-sg1-associated infections is in any way attributable to fewer
actual cases. Surveillance conducted in the United States before
and during the increase in UAT popularity suggests that the pro-
portion of LD associated with Lp1 is variable year to year and
ranges from 50 to 91% when only culture-confirmed cases are
included (121, 125). More recent international surveillance and
laboratory data suggest that a simple decrease in the non-Lp1 bur-
den is not to blame. Denmark employs a more comprehensive
diagnostic and testing regimen that relies on culture isolation and
NAATs at levels well above the rest of the European Union and
U.S. averages (120, 135). In the period from 1996 to 2006, approx-
imately one-third of LD cases were culture confirmed in Den-
mark, which revealed Lp1 in only 60% of cases on average, similar
to U.S. rates before the decline of culture techniques (271, 286). At
present, it is uncertain if Denmark is burdened with higher-than-
average enviromental levels of non-Lp1 (170); seroprevalence
studies are suggestive of wide-ranging and diverse Legionella ex-
posure in this country but fail to clarify questions surrounding
environmental distribution (160, 287, 288). Regardless, enhanced
surveillance and identification in Denmark likely detect a broader
spectrum of LD caused by less common clinical serogroups and
species, for which the current Lp1-specific UATs are not sensitive.

A closer analysis of Danish research also reveals an alarming
trend: mortality rates for all non-sg1 LD patient groups were
higher than those for any Lp1-infected population (i.e., MAb2
positive or negative) (271). Similarly high levels of mortality were
observed in the United States between 1980 and 1989 for patients
infected with L. pneumophila sg6 (121). Moreover, the reported
survival rate is low (73%) for cases who are culture positive but
UAT negative (125), a pattern which is more likely for non-Lp1
infections. Three plausible explanations for the apparently higher
mortality rate in these subgroups include (i) preexisting patient
immunosuppression leading to increased susceptibility to all le-
gionellae and potentially higher inherent mortality, (ii) misdiag-
nosis and treatment delay due to the previously discussed UAT
serogroup limitations (286), and/or (iii) increased non-sg1 Legio-
nella pathogenicity. Given this historical overview of shifting di-
agnostic trends in the United States and recent international data
suggesting a higher non-Lp1 clinical prevalence, it is reasonable to
assume that significant underdiagnosis of non-Lp1 LD has oc-
curred due to an overreliance on current-generation UATs.

Healthy populations across geographically diverse parts of the
United States, Europe, the Middle East, Australia, Japan, South
Korea, China, and former Soviet states display a large variation in
seroprevalence for all legionellae, which additionally supports a
reexamination of local Legionella exposures and the value of Lp1-
specific UATs for diagnosing most LD cases (153–159, 289–303).
This underscores a pressing need for the development of more
inclusive Legionella rapid diagnostics; to be useful in a basic labo-
ratory or POC setting, a pan-Legionella UAT would ostensibly be
as simple to perform as current tests while detecting additional
species and serogroups with similar efficiencies. Such a test would
be invaluable, especially in regions with potentially higher envi-
ronmental levels of non-sg1 L. pneumophila (e.g., the southwest-
ern United States) and in countries where non-pneumophila Le-
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gionella species are documented in a significant proportion of LD
cases (e.g., Thailand, Australia, and New Zealand) (271).

Regardless of the species or serogroup, clinicians should be par-
ticularly aware of in vitro diagnostic limitations when ruling out
LD. A negative UAT does not necessarily exclude LD from con-
sideration (304), because severe disease is more likely to yield a
positive test (as opposed to mild LD), and results can vary greatly
with time since exposure (141, 259, 305–307). These complica-
tions were confirmed in several research studies, where presum-
ably low antigen excretion presented “delayed positive” ICT re-
sults (using the BinaxNOW Legionella ICT) observed at later time
points (e.g., after 1 to 4 h of incubation) for samples initially giving
borderline EIA absorbance measurements (267, 268, 276, 308).
However, with some commercial products, this procedure may
occasionally yield false-positive results, and manufacturers typi-
cally do not endorse this method of use (with some exceptions,
e.g., Oxoid Xpect); in any case, results should be interpreted with
caution if this method is performed (278, 309). In general, if initial
UAT results are negative but the index of suspicion for LD remains
high, clinicians are encouraged to perform testing multiple times
over a longer period and/or to employ alternative testing modal-
ities, such as PCR (283, 305), and additionally, concentrating
urine can increase sensitivity without decreasing specificity (266,
279, 283, 306); however, boiling to reduce nonspecific interac-
tions may be advised. These additional steps would likely abrogate
the time advantages of the rapid ICT. Also, while results from a
UAT may be sufficient for initial LD treatment, a culture from a
patient specimen is still invaluable for epidemiological studies to
mitigate further exposure from an environmental point source
(214). From a public health standpoint, this cannot be overem-
phasized. Many outbreaks unfortunately result in a greater num-
ber of casualties due to the lack of an isolate from the initial pa-
tient(s), thus hindering an effective and timely public health
response.

Serological and Antibody-Based Assays

Serological testing for IgG and IgM antibodies against Legionella is
a diagnostic tool that was critical in the original Philadelphia out-
break investigation (7, 9, 51) and one of the principal methods
used for LD diagnosis in the early 1980s (125). While once popu-
lar, the number and scope of serological tests performed in the
modern clinical laboratory have dropped significantly with the
rise of standardized culture media and techniques and faster,
more definitive analyses such as the rapid UAT and molecular
methods (125). According to the European Centre for Disease
Prevention and Control (ECDC) and the World Health Organi-
zation (WHO), the use of serology for LD confirmation in Europe
declined from 61% to 6% on average in the period from 1995 to
2010, displaced by the faster, less technically demanding UAT
(146, 257). Data from the U.S. passive surveillance system since
1980 and the Supplemental Legionnaires’ Disease Surveillance
System (SLDSS) between 2005 and 2009 highlight an equally dra-
matic 60% decrease in the use of serology, with �1% of case di-
agnoses currently relying on serology or DFA assays (15, 125). A
similar trend was found in parts of Canada, where the probability
of detection by serology or DFA has fallen precipitously with in-
creased UAT usage (310). There are several obvious reasons for
this change; even with the commercial availability of IFA assays
and ELISAs for detecting patient seroconversion, serology is not a
timely indicator of disease. Reliance on a 4-fold increase in anti-

body titer (to 1:128) between acute- and convalescent-phase se-
rum samples taken 4 to 8 weeks apart means that the window for
treatment has long passed (113). Furthermore, underlying medi-
cal conditions or immunosuppression may occasionally delay or
prevent a 4-fold increase in titer from actually occurring, despite
the existence of a bona fide infection (311–313). The majority
(5.5% out of a total of 7%) of serology testing in the European
Union is performed with a single, high convalescent-phase titer
(120), which can be problematic, since prior exposure cannot be
ruled out, even at titers of �1:256 (238, 314). A growing list of
studies suggests that elevated Ig titers for Legionella can be de-
tected in �1% to almost 30% of healthy individuals, depending
on age, location, work environment, and, occasionally, gender
(154, 155, 158, 288, 293, 297, 315). Of potential importance, the
use of different in-house-developed and commercially developed
IFA and EIA antigen preparations may complicate the interpreta-
tion of antibody titers for Legionella, especially across time and
from different studies.

There are further challenges for serological assays: cross-reac-
tivity may complicate the interpretation of results for non-pneu-
mophila and non-sg1 Legionella infections (316–320), 20 to 30%
of individuals with culture-confirmed LD never seroconvert based
on the 4-fold rule (113), and proper interpretation of serological
tests, such as IFA assays, requires extensive training and experi-
ence because results are often subjective and semiquantitative. As
such, commercially available ELISA kits for detection of Legionella
seroconversion may be increasing in popularity because they ab-
rogate interpretational ambiguity through automation; however,
the diagnostic accuracy of these tests is not yet established or
agreed upon, and any trend toward their adoption has not been
fully evaluated (216). Acknowledging these limitations, serology is
still relevant for LD confirmation when the infectious agent can-
not be isolated, and serology provides supportive data when cor-
roborated by additional tests such as DFA or other immunohisto-
chemical assays. Serology can also be valuable for retrospective
epidemiological investigations, to identify patterns of disease, po-
tential ongoing outbreaks, and general seroprevalence.

DFA assays, slide agglutination tests (SATs), and MAb screens
are antibody based but not generally considered “serology” in the
traditional sense because patient serum is not directly tested. SATs
and MAb screens require a pure-culture isolate, while DFA assays
can be performed on cultures, patient tissues, or secretions. Over-
all, their use in the clinical laboratory for Legionella respiratory
antigen detection appears to be minimal, decreasing from a rate of
1% in 1996 to �1/10 of 1% in 2010 (146, 257). Interestingly,
among ELITE member laboratories (n � 141), approximately half
of clinical (43%) and commercial (54%) laboratories and most
public health laboratories (65%) rely on MAbs or SATs for isolate
or specimen confirmation, and a subset of laboratories use DFA
assays for subtyping purposes (C. Lucas, personal communica-
tion). These numbers are not surprising given that ELITE-certi-
fied laboratories have a specific interest in Legionella environmen-
tal detection and typing.

DFA assays, SATs, and MAb blotting are useful for qualitative
Legionella identification and typing at the species and serogroup
levels. The tests benefit from being relatively rapid, inexpensive,
and reliable, allowing strain comparisons across time with com-
mercially available reagents (113), but similar to the IFA assay,
they require a moderate-to-high level of laboratory expertise. Of
particular note, MAb panels, such as the one developed by Joly et
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al., that allow Lp1 subtype discrimination can be useful in research
or clinical laboratories for epidemiological investigations (321–
323). While this panel of MAbs is not widely available or sold
commercially in the United States, a comparable collection,
known as the Dresden panel, is distributed by a single research
laboratory in Dresden, Germany (317). The CDC routinely em-
ploys all three methods alongside more recently developed nucleic
acid-based amplification techniques for initial isolate screening
and molecular typing for epidemiological studies. For instance,
our laboratory now uses assays that rely on high-resolution melt
(HRM) technology, along with alternative chemistries, to effec-
tively identify clinically relevant Legionella species (CDC, unpub-
lished data). We believe that these newer approaches support a
more focused identification scheme than solely targeting con-
served regions, such as 16S. One notable limitation to this, and all
NAATs, is the inability to detect unknown or novel strains that
may be present, and like the UAT, a negative DFA or IFA result
does not necessarily exclude LD from the diagnosis and should not
preclude attempted isolation by culture (113).

Nucleic Acid-Based Molecular Diagnostics

Nucleic acid-based research for Legionella detection, diagnostics,
and typing began in the mid-1980s (324, 325). Prior to the wide-
spread adoption of PCR, scientists experimented with Legionella-
specific DNA probes and commercial 125I-labeled Legionella
DNA-RNA precipitations (Gen-Probe kit) (326, 327). The first
report of PCR as a tool for Legionella detection came in 1989, when
researchers from Stanford University combined PCR with South-
ern blot analysis to detect Legionella DNA spiked in water (227).
Progress with PCR-based strategies continued into the 1990s for
epidemiological studies with environmental samples. Both retro-
spective and prospective clinical diagnostic and epidemiological
research validated this powerful new method in a variety of ma-
trices, including water from cooling towers, rivers, and hot tubs as
well as sputum, BAL fluid, serum, and urine (21, 229, 328–334).
Real-time PCR gained popularity in the early 2000s, and although
it requires technical expertise and complex, expensive thermal
cyclers and software, many commercially marketed rapid envi-
ronmental Legionella detection assays now employ this technol-
ogy (Table 2).

The benefits of NAATs, including high sensitivity and specific-
ity, rapid turnaround time, and widespread use, have validated
this technology as a probable indication for clinical LD diagnosis
(230–232). Isothermal amplification, conventional PCR, and real-
time PCR (single and multiplex) protocols have been developed
for Legionella detection and characterization, the latter enabling
target quantification and bacterial enumeration. Since the main-
stream introduction of real-time PCR, numerous groups have
evaluated the efficacy of nucleic acid detection alongside culture
and other established methods. Assuming proper bioinformatics
and primer/probe design and stringency, most NAAT-based as-
says are highly specific (close to 100%), and the growing consen-
sus is that the sensitivity of PCR (both conventional and real time)
is equal to or greater than that of culture-based detection using
specimens from the lower respiratory tract or environmental wa-
ter samples (286, 335–344). Notably, the success of both PCR and
culture for LD diagnosis is positively correlated with disease sever-
ity. However, culture demonstrates a greater decrease in sensitiv-
ity over the course of infection (due to antibiotic treatment and
disease resolution) than PCR-based methods; thus, nucleic acid

detection may be superior for diagnosing milder LD cases or de-
tecting prior exposures (119, 336, 343). Additionally, PCR does
not exhibit the apparent culture medium bias where BCYE or its
selective variants favor the growth of particular L. pneumophila
serogroups or Legionella species (345–348), and thus, NAATs may
be more sensitive for the detection of all legionellae (339).

There is a growing list of commercially developed assays for
Legionella nucleic acid detection (Table 2); however, only one has
FDA clearance for clinical LD detection in the United States. A
single test from Becton, Dickinson (BD Probetec ET Legionella
pneumophila) that uses strand displacement amplification re-
ceived FDA clearance in 2004 but is not currently available for sale
in the United States (http://www.fda.gov). Commercial and in-
house-developed NAATs are used in both clinical and environ-
mental laboratories; however, the list of Legionella genes amplified
is limited. The most common targets include a conserved segment
of the rRNA genes for the 5S and 16S subunits, the 16S-23S spacer,
and/or the macrophage inhibitor protein mip, found primarily in
the genus Legionella and highly conserved in all L. pneumophila
isolates (226, 332–334, 349–358). Several studies have also exam-
ined alternative chromosomal targets, such as dotA, gyrB, dnaJ,
wzm, and wzt (340).

There is currently no consensus on the value of one gene or
marker over another for Legionella NAAT development, with the
exception that mip is typically used for L. pneumophila detection
or general species identification. Ultimately, the selection of gene
targets is influenced by the specific objectives of the testing labo-
ratory, and thus, NAAT standardization may not be necessary or
possible. One example in this respect is the CDC Legionella mul-
tiplex real-time PCR assay that was developed in response to the
need for a prevalidated Legionella NAAT at U.S. state public health
departments and partner laboratories in Thailand, Egypt, Kenya,
and South Africa as part of the Global Disease Detection Program.
The test was designed to simplify laboratory workflow for the
simultaneous detection and typing of culture isolates, specimens,
and contaminated environmental samples, with an internal con-
trol target (359, 360). This single-tube assay targets the ssrA (for all
Legionella species), mip (for L. pneumophila), and wzm (for Lp1)
genes.

In addition to detection and diagnosis, NAATs are commonly
used for Legionella typing, mainly in conjunction with traditional
MAb use or serology. Former and current nucleic acid typing
methods include plasmid profiling, restriction fragment length
polymorphism (RFLP) detection, pulsed-field gel electrophoresis
(PFGE), ribotyping, arbitrarily primed PCR (AP-PCR) (or ran-
dom amplified polymorphism DNA [RAPD] analysis), repetitive
element PCR (rep-PCR), RFLP plus PCR (infrequent restriction
site PCR [IRS-PCR]/amplified fragment length polymorphism
[AFLP] analysis), and phylogenetic comparison of various Legio-
nella species- and strain-specific genes, including ftsZ and sidA,
among others (192, 228, 325, 361–370). Legionella species identi-
fication has relied largely on 16S rRNA gene or mip sequencing,
while the common L. pneumophila sg1 Paris subtype can be fur-
ther characterized by strain-specific, short, regularly spaced, pal-
indromic sequences (spoligotyping) (333, 371, 372).

The current gold-standard L. pneumophila genotyping assay for
epidemiological investigations is sequence-based typing (SBT),
developed as a variant of multilocus sequence typing (234, 235,
373). SBT-based strain discrimination relies on the sequences of
an ordered seven-gene collection (flaA, pilE, asd, mip, mompS,
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proA, and neuA), with the option of including a neuA homologue
(neuAh) when the standard SBT primers fail to amplify the target
in non-sg1 strains. SBT has the advantage of direct sequence com-
parison, which eliminates the interpretational subjectivity of non-
sequence-based methods such as PFGE, which are prone to band-
ing ambiguities over time or between laboratories (374). In
support of SBT, the European Society for Clinical Microbiology
Study Group on Legionella Infections (ESGLI) (formerly the Eu-
ropean Working Group on Legionella Infections [EWGLI]) main-
tains an allele database (currently version 3.0) that allows querying
of large sets of raw sequence data, delivering both an allelic profile
and a final combined sequence type (ST) for each isolate (Table 3).
The database is dynamic and continually updated with the addi-
tion of new allele sequences and STs.

SBT is traditionally performed on DNA extracted from culture
isolates; however, several studies have demonstrated some success
when standard or nested SBT was performed directly on nucleic
acids extracted from patient tissues or fluids (375–378). This adds
a much-needed tool to the Legionella typing repertoire. However,
caution is stressed because the efficiency of SBT on culture-inde-
pendent preparations varies widely with sample origin (e.g., spu-
tum versus BAL fluid) and quality and also is typically much lower
than that of pure isolate extractions. Laboratory expertise and the
use of high-quality media can maximize bacterial growth from
otherwise low-quality samples, yet if an isolate is not obtained
because of prior antibiotic therapy or suboptimal shipping and
storage, culture-independent SBT offers a potentially viable alter-
native.

Legionella nucleic acid-based detection offers significant advan-
tages over serology and culture in terms of sensitivity and speed.
However, there are several notable disadvantages and limitations.
PCR may not be ideal for testing non-lower respiratory tract sam-
ples (e.g., urine and serum); at best, PCR sensitivity in these spec-
imens only approaches that of the L. pneumophila UAT (286, 336,
343, 379–383). One inherent complication with all nucleic acid
amplification methods is the difficulty in assessing bacterial via-
bility. These methods do not discriminate between free nucleic
acids, either in solution or amoeba associated; nucleic acids from
dead or dying bacteria; and/or viable but nonculturable (VBNC)
legionellae. This is evidenced in environmental studies that de-
tected a higher level of bacterial DNA than was corroborated by
culture and where the persistence of Legionella DNA after multiple
rounds of remediation resulted in no detectable culture growth
(183, 338, 341, 342, 384). As a consequence, PCR has a low posi-
tive predictive value (PPV) for legionellae compared to that of
culture methods in environmental settings; conversely, PCR has a
high negative predictive value for viable Legionella in the same
samples (�97%) (341, 343). Interestingly, PCR in clinical appli-
cations may have a higher PPV (than for environmental samples)
despite the lower sensitivity with nonrespiratory specimens (379).
Two potential remedies for the low PPV with samples from envi-
ronmental sources include reverse transcription-PCR, amplifying
labile RNA targets present in metabolically active bacteria, and the
use of a cell-impermeant chemical, such as ethidium monoazide
(EMA) or propidium monoazide (PMA), to inhibit PCR amplifi-
cation from nonviable cells or extracellular nucleic acids (385–
390). Notably, neither alternative protocol alone will discriminate
VBNC legionellae; however, this cell population still poses a po-
tential human health risk (391–394).

The expansion and development of nucleic acid amplificationP
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methods offer important real and potential benefits to the field of
Legionella detection and diagnosis. In comparison, serological or
antibody-dependent assays create cross-reactivity and stability is-
sues and require expensive investments in manpower, animal
care, and time. Nucleic acid amplification technologies still neces-
sitate specially trained personnel and sophisticated machines but
are increasingly accessible to a wider array of laboratories on a
moderate budget. The commercial availability of environmental
Legionella nucleic acid detection kits (Table 2) and the abundance
of research and methodology (244) mean that laboratories need
not design, optimize, and implement a complex, “home-grown”
strategy for testing. Additionally, there are some problems that
nucleic acid molecular methods are more apt to solve; PCR is the
only approach currently suitable for diagnosis of LD due to non-
sg1 and non-pneumophila Legionella species in a time frame that
could positively influence patient management (51).

Collectively, nucleic acid-based methods are valuable additions
to LD diagnostic and detection schemes; however, the limitations
inherent to NAATs (395), as discussed above, support the concur-
rent use of multiple testing modalities to increase the probability
of successful detection. Combined with traditional confirmatory
techniques, NAATs can augment diagnostic sensitivity for LD in
clinical and epidemiological settings (119, 344), especially for less
severe disease with lower bacterial loads, and can help define the
full extent of disease burden (119).

Emerging Methods and Technologies

Advancements in Legionella in vitro diagnostics are often derived
from the application of novel approaches to existing assays or
through de novo development of innovative technologies. Repre-
senting both methodologies are several established (mass spec-
trometry and real-time PCR-based TaqMan array cards) and
emerging (immunomagnetic separation [IMS], isothermal nu-
cleic acid amplification, high-resolution melt analysis, and whole-
genome sequencing [WGS]) techniques that may enhance Legio-
nella detection and characterization in various clinical settings.
This will ostensibly improve outcomes during outbreak responses
and epidemiological investigations.

Isothermal nucleic acid amplification is a general classification
for DNA or RNA amplification at a constant temperature with
minimal or no cycling, as is required for PCR (for reviews, see
references 396 and 397). The major advantage of most isothermal
techniques is rapid target detection (within 15 to 60 min) without
the need for expensive, complex, and energy-demanding thermal
cyclers. Among the various methodologies, nucleic acid sequence-
based amplification (NASBA) and loop-mediated isothermal am-
plification (LAMP) have been used to detect Legionella DNA in
clinical and environmental samples (130, 398–402). Numerous
studies have employed isothermal amplification for detection and
identification of viral (403–405), bacterial (406–408), and para-
sitic (409–411) pathogens, and various commercial kits and com-
ponents are available. In particular, one company (Eiken Chemi-
cal Co., Japan) offers a Legionella-specific LAMP kit that is gaining
popularity in environmental research and monitoring (130, 401,
402).

Microfluidic TaqMan low-density microarray cards (TAC), de-
veloped in the mid-2000s by Life Technologies, can quickly inter-
rogate gene expression in various disease states (412–416). Re-
searchers at the CDC adapted TACs for the simultaneous
detection of �20 respiratory pathogens, including Legionella (417,E
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418); this custom array card is now the principal tool for identify-
ing unknown respiratory disease outbreaks and is being piloted
for population-based surveillance programs at several U.S. and
international sites to define respiratory disease etiology and bur-
den (419). TACs offer increased real-time PCR throughput (384
individual reactions) in a rapid, reproducible, and simple setup
containing prespotted primer-and-probe combinations. This for-
mat has since been customized for larger field evaluations and for
the detection of nonrespiratory syndromes (420–424).

Mass spectrometry (MS) is a mature yet still evolving technol-
ogy adapted to the rapid identification and classification of clini-
cally relevant pathogens (for a review, see reference 425). MS for
Legionella identification was first performed in the late 1970s in
combination with gas chromatography (426). The development
of matrix-assisted laser desorption ionization–time of flight
(MALDI-TOF) MS has proven reliable for Legionella species iden-
tification and typing, although intraspecies serogroup discrimina-
tion is not yet possible (425, 427–430). Given a core facility with
established expertise and equipment, MALDI-TOF MS is a fast
(�10-min), inexpensive method for isolate identification that has
recently received FDA clearance. Reference spectral databases are
critical for MS chromatogram comparisons, and several have been
created or improved to aid in Legionella typing (e.g., modified
Bruker and Biotyper databases) (427, 429, 431).

IMS combines specific, whole-cell antibody recognition with
magnetic bead-based purification for bacterial concentration.
Published IMS research demonstrates sensitivity for legionellae in
environmental and clinical samples, with or without filter concen-
tration or DFA, at or above standard culture or fluorescence de-
tection levels (351, 432–438). Further IMS development may be
useful for rapid field, laboratory, or POC detection, although the
specificity limitations of antibody-based isolation must be ad-
dressed (see “Serological and Antibody-Based Assays,” above, for
a discussion of limitations).

HRM curve analysis was originally proposed (439) and then
developed to detect single-nucleotide polymorphisms (SNPs)
within PCR amplicons (440–443). This technique may employ
double-stranded intercalating dyes (e.g., SYBR-GreenER,
EvaGreen, or SYTO9) or fluorescently labeled primers (Lux
chemistry) in both initial real-time PCR and subsequent HRM
analyses; alternatively, fluorescence resonance energy transfer
(FRET)-based probes can be added after PCR for the secondary
melt analysis. One variant of this technique employs a solid-state
surface plasmon resonance sensor combined with gold-labeled
probes (444). HRM analysis has been used in numerous studies
since the mid-2000s on a wide range of human pathogens, includ-
ing those within the genera Campylobacter, Brucella, Leishmania,
Bordetella, Clostridium, Mycobacterium, Mycoplasma, Chlamydo-
phila, Cryptosporidium, and Staphylococcus, among others (445–
452). Recent studies have shown HRM analysis to be a powerful
technique for characterizing antibiotic resistance and typing re-
spiratory disease agents, including M. pneumoniae, C. pneu-
moniae, and Chlamydophila psittaci (453–459). To our knowl-
edge, HRM analysis for intraspecies or interspecies Legionella
discrimination has been included in only a few studies (460–463);
however, this approach seems promising for future Legionella di-
agnostics or typing.

WGS is an increasingly popular and accessible technique with
broad diagnostic potential for public health laboratories. The de-
velopment of “next-generation” DNA sequencing platforms and

reagents from a variety of manufacturers has dramatically de-
creased the time and cost of WGS over the past 10 years. A recent
and growing pool of research demonstrates that these technolo-
gies are well suited for sequencing applications toward microbial
identification and typing (464–470); examination of phylogenic
relationships among pathogens for population-based, longitudi-
nal, or retrospective epidemiological studies (471–488); identifi-
cation of molecular bases for antibiotic resistance or virulence
(489–501); discovery of DNA targets for diagnostic development
(502, 503); and, less often, prospective surveillance or outbreak
investigations (504–509). One of the largest hurdles to the adop-
tion of WGS for a rapid response during public health emergen-
cies is the development of an efficient bioinformatics pipeline for
data analysis and interpretation, including comprehensive micro-
bial reference libraries. Recently, WGS was employed in a retro-
spective United Kingdom pilot study and in real time during a
Legionella outbreak investigation at an Australian hospital (510,
511). These initial studies confirm that WGS can provide high-
quality typing and epidemiological data, although continued im-
provement in data analysis will undoubtedly be necessary to real-
ize the maximum benefit of this approach. As part of the recently
launched CDC Advanced Molecular Detection initiative (http:
//www.cdc.gov/amd), the CDC Legionella Laboratory Team is
currently integrating next-generation sequencing technologies
with enhanced bioinformatics capabilities for legionellosis detec-
tion and outbreak responses.

CDC OUTBREAK INVESTIGATIONS: THE SYNERGY OF
EPIDEMIOLOGY AND LABORATORY SCIENCE

General Field and Laboratory Procedures for Outbreak
Investigations

Between 1976 and 2013, CDC laboratories have assisted with the
isolation, identification, and/or typing of legionellae in �170 do-
mestic and international outbreaks and thousands of sporadic
cases (CDC, unpublished). In that same time frame, CDC person-
nel have participated in at least 98 Legionella-focused coordinated
epidemic assistance investigations (Epi-Aids) (512, 513; CDC, un-
published). Our understanding of Legionella ecology, epidemiol-
ogy, and disease is informed, in large part, by these investigations.
Since 1976, Epi-Aid field work and subsequent research studies
have been instrumental in defining the clinical description of LD
and risk factors for contracting the disease as well as detailing the
environmental growth, persistence, and epidemiological trans-
mission of legionellae to susceptible populations (512). Concur-
rently, the CDC Legionella laboratory team and others have helped
characterize bacterial physiology while developing diagnostics
and procedures for disease and environmental detection. In order
to detail and share how laboratory diagnostic and field detection
methods are integrated with epidemiological investigations dur-
ing high-profile Legionella outbreaks, the following paragraphs
outline the general field and laboratory workflow. This includes
sample collection and analysis as well as culturing and typing of
legionellae to identify culprit strains and sources of environmental
contamination. Procedures and protocols for assessment, collec-
tion, and testing can be found in Table 3, on the CDC Legionella
website, as well as in a recent publication (514) and accompanying
reports in the same volume.

The basic activities common to all outbreak-associated epide-
miological field investigations assisted by the CDC Legionella lab-
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oratory team include (i) environmental assessment and sample
collection, (ii) culturing and testing of both clinical specimens and
environmental samples, and (iii) phylogenetic and/or strain char-
acterization of clinical and environmental Legionella isolates.
During outbreak investigations, shared geography among disease
cases typically defines the study area, while field personnel, led by
epidemiologists and often including laboratorians, complete an
extensive “on-the-ground” environmental assessment to identify
potential sampling sites. The environmental assessment provides
relevant information, such as the presence of water and air-han-
dling systems that are capable of aerosol generation, but the spe-
cific number and type of samples collected are dependent on the
size and complexity of the facility as well as the locations of re-
ported LD cases. Investigations of localized LD clusters where pa-
tients share recent common exposures may require only 40 to 50
environmental samples from 30 to 40 sites, while outbreaks over
larger, less defined areas in which potential exposure sources may
not be obvious can necessitate �300 samples from 100 or more
locations. As a standard practice, when possible, the CDC collects
both 1-liter bulk water and biofilm swabs in sterile plastic contain-
ers from interior locations distal to incoming water, such as
shower heads, faucets, hot water heaters, misters, decorative foun-
tains, and spas, and from more central or proximal sites, such as
incoming municipal or well water mains and hot recirculation
supply lines. Air-conditioning cooling towers, which are histori-
cally associated with Legionella contamination (81, 245, 515–518)
and LD outbreaks in the United States (187, 519–521) and inter-
nationally (186, 190, 521, 522), can support heavy bacterial
growth, and all locations within the study zone are routinely sam-
pled. At the time of collection, water is assessed for temperature,
pH, and residual disinfectant (e.g., chlorine or bromine) before
chemical neutralization with sodium thiosulfate. Samples are im-
mediately packed and shipped in insulated containers to ensure
minimal temperature fluctuation en route to the CDC Legionella
Laboratory in Atlanta or an approved local testing facility.

In the laboratory, potable water is concentrated with 0.2-�m-
pore-size polycarbonate filters, and nonpotable samples (e.g.,
from cooling towers or fountains) are both acid treated and di-
rectly plated onto BCYE solid medium with selective agents (e.g.,
antibiotics and/or glycine) (243, 514). Plates are incubated for up
to 14 days, and primary colony isolates are replated and confirmed
on cysteine biplates. If necessary, serogrouping is performed by
MAb dot blotting, slide agglutination, and DFA analysis in some
instances (238). L. pneumophila sg1 subgroups (e.g., Philadelphia
and Benidorm, etc.) are assigned based on a previously developed
MAb panel (321, 322). A representative subset of L. pneumophila
isolates are typed by using the standardized ESGLI allelic sequence
profiling method (234, 235, 321, 322). Non-pneumophila Legion-
ella isolates and those of ambiguous type are identified by an in-
house-developed real-time PCR assay followed by mip gene se-
quencing, if required (359, 371). Clinical specimens are
interrogated by the same identification and typing procedures as
those described above; an epidemiological linkage is established
when SBT and MAb2 profiles match between patient and environ-
mental isolates.

High-Profile Legionnaires’ Disease Outbreaks

U.S. federal, state, and local authorities as well as international
organizations and foreign health ministries may formally request
assistance from the CDC when LD is detected. A comprehensive

Epi-Aid involves on-site support to health agencies in determin-
ing the scope of infection and the potential source(s) of disease
transmission. These resource-intensive investigations are typi-
cally in response to an urgent public health threat and can garner
local or national attention (e.g., a recent outbreak in Pittsburgh,
PA, led to congressional hearings) (85, 92, 523). The CDC Legio-
nella laboratory team is an essential part of the outbreak response
and supports Epidemic Intelligence Service (EIS) officers and ep-
idemiologists both in field investigations and with laboratory ex-
pertise. Several well-documented Epi-Aid investigations carried
out by the CDC in the 1990s and 2000s are discussed below to
illustrate the interdisciplinary nature of these events and to high-
light the complexities and nuances in each type of outbreak inves-
tigation and, where applicable, emphasize important laboratory
advances, such as new diagnostic or detection methods, that aided
in the identification of a transmission source.

Health care-associated outbreak in a long-term-care facility.
Older adults and persons with underlying medical conditions
have an increased risk of Legionella infection; thus, hospital and
nursing home settings are often implicated in outbreaks. In Sep-
tember 2004, the CDC responded to an LD outbreak in a long-
term-care facility (LTCF) in Cherokee County, NC (193). In total,
four residents of the LTCF and three local community cases were
confirmed to have LD by the Legionella UAT; three of the seven
cases were fatal. A comprehensive field investigation was under-
taken at the LTCF, which centered on potential transmission from
potable water; however, Legionella was not found in any sample
collected from the facility. Focusing outside the LTCF, investiga-
tors conducted �250 interviews in the surrounding community
in search of unidentified LD cases; three additional “confirmed”
and two “possible” cases were detected. With the size and scope of
the sampling area expanded, a local industrial cooling tower 0.4
km away from the LTCF was found to harbor multiple Legionella
species and Lp1 monoclonal subgroups. In addition, Legionella
DNA was detected (by PCR for the mip gene) on special filters
fitted to rooftop air-handling units of the LTCF and was subse-
quently matched to the DNA of a cooling tower isolate. The prox-
imity of the cooling tower to both the LTCF and the additional
community cases was sufficient for a presumptive remediation of
the site; unfortunately, patient respiratory specimens did not yield
bacterial growth, which hindered the positive identification of a
disease source. Notably, what was initially suspected to be institu-
tional transmission (because two patients never left the LTCF)
proved instead to be community based, requiring multiple rounds
of interviews, sampling, and testing. The use of PCR for pathogen
detection and typing provided laboratory flexibility in defining
the likely transmission source and conduit (air-conditioning
fresh-air intake). As highlighted in the published case description,
illnesses at the LTCF represented sentinel events in a wider com-
munity exposure (193) and additionally underscored the com-
plexities associated with Legionella outbreak investigations.

Health care-associated outbreak in a hospital. Immunocom-
promised individuals, especially transplant recipients on immu-
nosuppressive regimens, are at an increased risk of developing LD
due to Lp1 or other species and serogroups (524–528). In addi-
tion, case-fatality rates for LD are higher among older males and
the immunosuppressed (121). In the first half of 1996, a cluster of
health care-associated LD cases was identified at a Southwestern
U.S. regional transplant center (529, 530). An initial in-house in-
vestigation and attempted remediation were unsuccessful in iden-
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tifying and controlling the problem, and by summer, the CDC was
requested to assist state and local officials. LD surveillance was
intensified, and a retrospective study for previously unrecognized
cases was initiated. A total of 25 culture-confirmed or potential
health care-associated cases were found: 17 were identified with
disease onset between 1987 and 1995, and 8 were discovered since
then (from 1996 to the present). The calculated LD attack rate for
all transplant patients at the hospital was 6%, and 12 patients
ultimately died, for a case-fatality rate of 48%.

Urine samples were available for many patients; however, a
commercially available UAT failed to detect Legionella urine anti-
gens. Fortunately, a hospital policy promoting bacterial culture
and typing combined with increased surveillance revealed infec-
tions by L. pneumophila serogroups 1, 4, 5, and 10 as well as by sg6,
which represented more than half of the disease burden. An ex-
tensive field investigation of hospital potable water from case pa-
tient room showers and faucets as well as water softeners, hot
water tanks, and private supply wells, among other locations, was
conducted. Environmental samples processed at the CDC re-
flected the bacterial composition and diversity in prior clinical
isolates; the CDC Legionella laboratory found the above-men-
tioned serogroups, with the addition of serogroup 11, L. anisa, and
an undetermined species. L. pneumophila sg6 was detected in both
the shower vapor of a case patient’s room (by a specialized Ander-
sen air-sampling device) and a carpet cleaner reservoir tank used
in the bone marrow transplant unit. Hospital water supply sys-
tems can be extensive and complex, providing optimal conditions
for Legionella growth and distribution. The difficulties and risks
associated with water distribution for transplant medicine places
added importance to disease monitoring and a rapid response in
specialized hospitals or units. This particular outbreak highlights
how field and laboratory techniques were critical in defining the
sources of infection and linking them to clinical disease; a thor-
ough epidemiological investigation helped identify common ex-
posures, and by using PFGE, CDC laboratorians confirmed that
the L. pneumophila sg6 strain found in the shower vapor and car-
pet cleaner was also responsible for most of the health care-asso-
ciated LD cases.

Commercially linked outbreak from an unlikely source. Both
potable and nonpotable water can support the amplification and
transmission of legionellae to susceptible populations. During
outbreak events, investigators face the daunting task of locating all
aerosol-producing devices when relatively few common expo-
sures are identified and disease is distributed over a seemingly
wide area. Decorative water features are a frequent addition to
public and private spaces and may serve as potential disease res-
ervoirs, but they can be overlooked in water safety plans due to
their unassuming size or lack of visible aerosol generation. In the
fall of 2004, clinicians at Rapid City Hospital in South Dakota
instituted increased diagnostic testing for seasonal CAP, which
included a Legionella UAT, in order to more efficiently target an-
tibiotic therapy. Eighteen cases of legionellosis were recognized in
the summer and fall of 2005 due to this improved surveillance.
The UAT was the primary method of diagnosis, while bacterial
cultures were grown from respiratory specimens of 4 patients, and
a 4-fold increase in serum titers was documented for one individ-
ual. Fourteen individuals were hospitalized, and one patient ulti-
mately died. Beginning in June of the same year, the CDC began
an extensive Epi-Aid response to this cluster of LD cases in Rapid
City (85). After interviewing case patients and controls, �300 tar-

geted 1-liter bulk water samples and biofilm swabs were collected
from 123 sites around the city and immediately shipped to the
CDC in Atlanta and a commercial Legionella laboratory. The list of
sites tested was extensive and citywide, including cooling towers,
chillers, condensers, supermarket misters, showers, sinks, hot wa-
ter tanks, municipal water systems and treatment plants, hot tubs,
and multiple fountains. Legionella contamination was wide-
spread, being identified in 35% of the locations tested.

Legionella pneumophila sg1 was the most common environ-
mental isolate recovered from the study region (from 43 of 123
sources); however, a number of other serogroups and non-pneu-
mophila Legionella species were also cultured, including L. pneu-
mophila sg8, L. anisa, L. bozemanii [sic], L. feeleii, L. rubrilucens,
and L. spiritensis (CDC, unpublished). It is not uncommon to find
multiple potential transmission sources during outbreak investi-
gations. Importantly, a promising epidemiological link among
half of all case patients was recognized, and MAb subtyping and
SBT analysis confirmed that the only environmental match to
previous clinical isolates came from a small, unassuming, plastic
decorative fountain in a local restaurant lobby; the outbreak
promptly ended when the fountain was removed. Clusters of LD
cases have been linked to decorative fountains both before and
after this reported outbreak (84, 172–176); however, the current
case was the first report of a small, low-aerosol-generating, deco-
rative fountain as the source. Notably, the success of this investi-
gation was dependent on epidemiological clues and clinical iso-
lates available from four case patients, which enabled laboratory
typing methods (MAb subtyping and SBT) to identify the exact
transmission source among the large number of potential sites.

Cruise ship-associated outbreak. From 2005 to 2009, cruise-
related LD cases accounted for �5% of travel-associated legion-
elloses reported to the U.S. SLDSS (15) and 7.6% of cases on av-
erage in Europe during the same time frame (207–209, 211, 212).
As previously reported (531), Legionella has become a problem for
cruise ships in a similar fashion as for hotels; both must manage
complex air-handling networks as well as potable and recreational
water distribution systems with the potential for Legionella growth
and transmission. Defective or improperly maintained onboard
water systems may present an increased LD risk for the older av-
erage cruising demographic, which is between 55 and 61 years of
age (532–534).

Identification of the largest cruise ship-associated LD outbreak
to date (535, 536) began in mid-July 1994, when a New Jersey
physician reported a cluster of legionellosis cases among three
individuals returning from the same Caribbean cruise (537).
Upon learning of three additional cases, CDC and New York State
health officials distributed an epidemiological questionnaire to
offloading passengers from the same vessel and provided a pre-
liminary health warning to boarding travelers. After consulting
with the ship’s staff and cruise line representatives onboard, the
CDC team began an environmental investigation by collecting
1-liter bulk water samples and biofilm swabs from sinks, showers,
fountains, water heaters, storage tanks, and the whirlpool spa,
among other sites. In addition, a number of tourist destinations
were sampled at the ship’s international port of call; all samples
were shipped back to the CDC Legionella laboratory in Atlanta. A
then-recently developed, commercially available Legionella PCR
dot blot assay (EnviroAmp; Perkin-Elmer Cetus) detected Legio-
nella species DNA at the majority of sites on the cruise ship (CDC,

Mercante and Winchell

112 cmr.asm.org January 2015 Volume 28 Number 1Clinical Microbiology Reviews

http://cmr.asm.org


unpublished), with L. pneumophila DNA in approximately half of
the samples.

Among all sampled sites, the whirlpool spa and filtration sys-
tem gave the strongest DNA hybridization signals, and a case-
control study demonstrated a strong epidemiological disease as-
sociation with the shipboard spa. Physical and chemical
examination of the spa revealed large amounts of organic material
in the sand filtration unit and no detectable bromine, which was
required to prevent microbial growth. Importantly, Legionella
culture growth was recovered from only this single location. State
and international epidemiologists were immediately notified
about the outbreak, and questionnaires were mailed to �3,000
recent passengers in an effort to identify additional cases of dis-
ease. In total, 50 cases of LD, with a median age of 63 years, were
identified from 9 separate cruises on the same ship during the
spring and summer of 1994; one individual died. Sixteen cases
were confirmed by UAT, serology, or both, and one L. pneumo-
phila sg1 isolate was grown from patient sputum. The MAb
subtype and AP-PCR patterns were an exact match between the
single clinical isolate and the strain grown from the shipboard
whirlpool spa.

This cruise-borne LD outbreak investigation is notable for the
following two unique developments. (i) Only one location dem-
onstrated bacterial growth despite positive Legionella DNA test
results for the majority of environmental samples, including po-
table water. As detailed in “Nucleic Acid-Based Molecular Diag-
nostics,” above, PCR is a powerful technique, but in most appli-
cations, it is not designed to discriminate live versus dead or
VBNC bacteria. The exclusive use of this PCR-based method
would have provided the false impression that most shipboard
water was currently colonized, when, in fact, the whirlpool spa was
the only detectable, and most likely, source of transmission at the
time of sample collection, as confirmed by culture. (ii) It is a chal-
lenge to recognize cruise-related outbreaks due to the potentially
long LD incubation period and the dispersal of passengers after a
ship docks (531, 535, 538). Fortunately, during this event, a con-
cerned physician prepared a careful medical and travel history for
the first three identified LD cases (537), which allowed the recog-
nition of wider disease transmission. The rapid reporting and re-
sponse from local to state and federal levels mobilized resources to
define the LD distribution and prevent further cases.

Legionella contamination onboard passenger and cargo vessels
may be an unappreciated hazard, as detailed here and as docu-
mented in sporadic cases and outbreaks on smaller scales (531,
539–547). A recent survey of Norwegian naval vessels suggests that
Legionella contamination is not isolated to passenger ships: re-
searchers found Legionella species DNA in the onboard potable
water of approximately one-half the naval vessels sampled, and
they were able to culture L. pneumophila from a smaller subset of
these ships (548). As described above, recreational baths and
whirlpool spas can provide optimal conditions for bacterial
growth and transmission and are among the nonpotable water
sources most frequently associated with ship- and land-based out-
breaks (18, 194–198, 531, 541, 549–556). To mitigate this water-
borne hazard, the CDC offers public guidance for the safe opera-
tion and disinfection of recreational hot tubs, and the WHO
provides literature for Legionella risk assessment in recreational
environments (Table 3).

Summary of Field and Laboratory Operations for Outbreak
Investigations

Each LD outbreak presents a separate and distinct set of challenges
for laboratory and field personnel. Some general parameters and
guidelines are common to all outbreak responses (e.g., environ-
mental assessment and sample collection), but no two situations
require identical resources or activities. Even sampling in similar
types of environments or scenarios requires an appreciation of
individual water and air management systems, usage patterns,
and, in some cases, weather and prevailing winds. The complex
and sometimes unmapped water distribution systems found in
both old- and new-building construction during a sustained out-
break at a regional transplant center necessitated sampling at hun-
dreds of potential sites; unlike a typical transmission point source,
the outbreak strain was systemic and was found in multiple areas.
Investigations also quickly change with new information; the fo-
cus of sampling efforts can be influenced by an individual’s recall
during interviews, and outcome success is variable depending on
the availability of clinical specimens. Several case patients in the
South Dakota investigation remembered their potential restau-
rant exposure only after a reinterview or hearing about the out-
break in the media, and the implicated decorative fountain was
not originally sampled because it was turned off during the envi-
ronmental investigation and therefore was considered an unlikely
source (85). The lack of a clinical isolate for epidemiological com-
parison in the North Carolina LTCF meant that transmission via
the nearby cooling tower was presumptive as opposed to con-
firmed.

The LD outbreak examples mentioned above together illustrate
several key points: (i) rapid, accurate transmission source identi-
fication during an outbreak response requires seamless cooper-
ation between state, federal, and local health authorities and
continuous communication among epidemiologists and labo-
ratorians; (ii) molecular methods for Legionella detection and typ-
ing, such as PFGE, AP-PCR, real-time PCR, and SBT, increase
diagnostic sensitivity and enhance strain discriminatory power
over traditional techniques (e.g., SAT), but these results must be
interpreted with care; (iii) a complete and thorough epidemiolog-
ical investigation that identifies common points of exposure to LD
cases is critical for narrowing down and defining potential trans-
mission sources; and (iv) a patient culture isolate, or sufficient
quantity of high-quality DNA from a specimen when no isolate is
obtained, is necessary for linking clinical disease with an exposure
source to enable focused remediation and to initiate public health
efforts to prevent further infections.

DISCUSSION AND FUTURE OF LEGIONELLA DIAGNOSTICS
AND DETECTION

Education, Awareness, and Reporting

From 2000 to 2011, the LD incidence rate more than tripled in the
United States, increasing in every U.S. geographical region, some-
times dramatically (e.g., a �7-fold increase in the New England
region) (15, 126, 557). A similar trend was documented in Europe,
with a 158% increase over 9 years starting in 2004 (146, 148). This
increase is likely attributable, in part, to enhanced detection (due
to the popularity of the rapid UAT) and more complete surveil-
lance and reporting. In the United States, the increasing median
age, and concomitant decreasing health, of a growing population
may also promote this trend (534, 558). However, the actual dis-
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ease burden is likely underestimated, given that LD cases present-
ing as nondescript CAP (especially mild cases) may be treated
empirically using broad-spectrum antibiotics that are active
against Legionella, leaving the disease, and its transmission
source(s), unrecognized and unreported. Consequently, LD-in-
clusive empirical treatment has contributed to the trend of declin-
ing mortality while masking both the true extent of disease and
potential outbreak-related disease clusters (15, 535). When CAP is
diagnosed and LD is suspected, laboratory confirmation is central
to defining disease etiology, detecting unidentified LD outbreaks,
and contributing to the larger goal of defining the scope of legio-
nellosis in the United States. Education and awareness of LD by
health care professionals, not as an exotic disease but as a poten-
tially deadly contributor to community- and health care-associ-
ated pneumonia, are critical to decreasing mortality among at-risk
populations. This is a key first step to understanding and address-
ing legionellosis in the coming decades.

An additional, unintended consequence of undetected out-
breaks is the missed opportunity for further description of disease
risk and clinical presentation. Most LD risk factors were originally
compiled during outbreak investigations, and ongoing research is
needed to fully document, refine, and continually update this de-
scription. For example, a wide spectrum of clinical features was
recently reported for full-term infants exposed to Legionella-con-
taining aerosols from a cold-mist humidifier (559). Surveillance
has also demonstrated sustained, high levels of travel-associated
LD cases, which creates challenges for health care systems in all
countries and states, regardless of the regional LD prevalence (15,
202, 210). Federal and international surveillance networks, such as
the National Notifiable Diseases Surveillance System (NNDSS)
and the Waterborne Disease and Outbreak Surveillance System
(WBDOSS) in the United States, are vital for recognizing these
patterns and clusters of disease. However, monitoring networks
are valuable only when health practitioners are familiar with the
symptoms and risk factors for LD, leading to laboratory confir-
mation, rapid treatment, and timely reporting by state agencies.

Controlling Disease Transmission

Legionellae are ubiquitous in natural ecosystems (both aquatic
and terrestrial), and advances in building technologies, particu-
larly since the 1950s (e.g., air-conditioning cooling towers, recre-
ational water features, and complex water distribution systems),
have provided ideal conditions for bacterial growth and persis-
tence (6). High rates of morbidity and mortality may result when
large human populations are brought into close proximity to re-
spiratory pathogens, especially at locations that concentrate indi-
viduals in at-risk groups (e.g., transplant hospitals). Therefore, a
second key to addressing legionellosis in the coming decades is
minimizing or eliminating disease transmission through risk as-
sessment, regular maintenance of potable and nonpotable water
systems, and water monitoring and treatment in facilities that care
for susceptible populations. Several informational resources are
available to building managers, industrial hygienists, and admin-
istrators (as well as to clinicians, laboratorians, and the general
public) to inform and guide their decisions in the design of a
comprehensive plan to inhibit Legionella colonization or when
contemplating action after a positive test result or disease is dis-
covered. Links to the following resources are provided in Table 3.
The American Society of Heating, Refrigerating, and Air-Condi-
tioning Engineers (ASHRAE) is an international organization that

provides standards, guidelines, and best practices to the building
technology field. Numerous ASHRAE publications address the
issues of legionellosis prevention and response in nonresidential
locales, such as guideline 12-2000 and Standard 188P, which deal
with minimizing and preventing LD associated with building wa-
ter systems. The Environmental Protection Agency (EPA) pub-
lished the Legionella: Human Health Criteria document, detailing
bacterial ecology and distribution, with sections on risk assess-
ment, analysis, and treatment. The WHO commits several chap-
ters in its guide Legionella and the Prevention of Legionellosis to
water safety plans (WSPs) as well as in-building distribution and
exterior cooling system assessment; additional WHO documents
discuss risk assessment for drinking water and water safety plans
in buildings. The ECDC provides two Legionella-related Web re-
sources, the Legionellosis Health Topic Web page and the Euro-
pean Legionnaires’ Disease Surveillance Network (ELDSNet)
website, which together include disease facts, recent surveillance
reports and publications, Legionella-focused events, case defini-
tions, operating procedures, and an outbreak investigation tool-
box. Two United Kingdom agencies, the Health and Safety Exec-
utive and Public Health England (currently merging with the
Health Protection Agency), also provide useful informational re-
sources. The CDC Morbidity and Mortality Weekly Report
(MMWR) publishes two related guidelines, the first document,
Guidelines for Preventing Healthcare-Associated Pneumonia, ad-
dresses specific recommendations on the topic of Legionella, and
the second document, coordinated by the CDC and the Health-
care Infection Control Practices Advisory Committee (HICPAC),
is entitled Guidelines for Environmental Infection Control in
Health-Care Facilities (560). In addition, the above-mentioned
CDC Legionella Web page provides tools and protocols for envi-
ronmental assessment, sample collection, and Legionella testing
and a list of ELITE-certified commercial laboratories. Finally,
there are many additional documents and resources from organi-
zations and government agencies not included here that may serve
as important guidance and instruction for interested parties. Ta-
ble 3 is not meant to be an exhaustive list but rather representative
of the types and scope of resources available.

The issue of ongoing microbial water monitoring is controver-
sial and thus warrants special attention. The CDC is not currently
positioned to unilaterally mandate regular assessment for Legion-
ella in potable and nonpotable water systems. However, it is clear
that institutions frequented by or housing susceptible individuals
should be aware of and mitigate the LD risk for their occupants
and visitors, as detailed in previous CDC guidelines (Table 3)
(111, 560). Large numbers of individuals in these high-risk cate-
gories are concentrated in organ transplant units, intensive care
units (ICUs), cancer centers, infant nurseries, and sites that com-
monly care for chronically ill or immunocompromised patients,
among others. These facilities should be vigilant in clinical surveil-
lance for Legionella and maintain a high index of suspicion for
disease even when results of environmental testing are negative
(561). Outside this institutional population, general hospitals and
facilities for seniors and the elderly (e.g., LTCFs) should, at the
least, undertake an infection control risk assessment and conduct
ongoing LD surveillance, while cruise ship medical providers are
recommended to employ rapid UATs in standard practice. These
locales should also understand their water distribution systems
and monitor temperature and levels of disinfectant (and/or water
quality parameters) at distal point-of-use sites. The importance of
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actively monitoring LD risk in non-health-care settings is less
clear; this is not to say that other establishments shoulder little risk
or bear no responsibility for the health of their patrons. As dem-
onstrated by the original 1976 American Legion epidemic at a
conference center hotel and the hundreds of LD clusters identified
since then, complex water and air-handling systems require
proper maintenance and disinfection regardless of their location
or the typical clientele. An additional, distinct category is reserved
for institutions that have experienced one or more LD outbreaks,
especially in the past 5 years. Data from recently conducted CDC
Epi-Aids suggest that disease transmission from a localized, pota-
ble water point source is typically symptomatic of wider, systemic
plumbing network colonization (CDC, unpublished). In these in-
stances, regular, short-term Legionella testing is advised, to mon-
itor the success of remediation; yearly, long-term testing may also
be warranted, to ensure that colonization does not recur.

Legionella Persistence and Remediation

Of particular interest to facility managers in areas with a high
environmental burden of Legionella, complex water distribution,
or at-risk populations is the issue of Legionella persistence. The
problem of long-term colonization in anthropogenic water sys-
tems has arisen many times in environmental assessments, retro-
spective studies (183, 562–565), and outbreak investigations (75,
92, 530, 566–571). As illustrated in one recent outbreak report
(75), �35 cases of LD in condominium residents were discovered
over 9 years due to the mistaken belief that low-level potable water
contamination did not pose a significant disease threat; seemingly
arbitrary “action levels” for remediation laid out by facility man-
agers and defined by bacterial concentration thresholds resulted
in recurrent and prolonged transmission and disease. As data
from the CDC ELITE program suggest, quantifying risk through
such a strategy is problematic, because while most participating
laboratories accurately determined the presence of bacteria (93%
of samples correctly characterized), the precision in Legionella
quantitation was very low (interlaboratory bacterial counts dif-
fered by up to 3 logs), with average 1.25-log underestimates of
viable numbers (258). The difficulty and extreme variability in
Legionella enumeration between different laboratories, sampling
strategies, and culture methods, and even from the same source on
different days, are reflected in previous reports as well (345, 561,
572, 573). Additionally, the numerical relationship between the
colonization level and disease is at best complex and at worst mis-
leading; for example, a recent metastudy evaluated an often cited
metric for assessing LD risk that is based on an increased preva-
lence (�30%) of hospital sampling sites being positive for Legio-
nella (574, 575). Researchers identified 31 peer-reviewed journal
articles representing 119 hospitals where reports of LD were tem-
porally associated with environmental testing. The results indicate
that the �30% positivity cutoff is neither sensitive (59%) nor
specific (74%) for use in LD risk management within health care
settings. While continued research is needed to confirm previous
findings, at least two important points are clear: (i) there is cur-
rently no known safe concentration of Legionella in man-made
potable and nonpotable water networks, which is due in part to
unreliable bacterial enumeration in complex samples, potential
day-to-day variability for Legionella detection at any individual
source (258), and disease dependence on multiple individual-,
environment-, and bacterium-specific factors (75), and (ii) risk
assessment and environmental management must be a multilevel

approach, based on proven science and best practices, and should
account for complexities in system architecture, potential routes
of exposure, and the susceptibility of present populations, among
others. Legionella can persist for long periods under permissive
control and monitoring policies. Quantification of risk based on
arbitrary levels of detectable colonization (75, 574, 576) is cur-
rently a misinformed and ambiguous calculus at best; hence, the
recommendation of unproven or incomplete approaches in re-
sponse to positive environmental samples (577) is imprudent and
ill-advised. Given these concerns, complete eradication of Legio-
nella from man-made water and air-handling systems should be
the stated goal, especially when cases of LD have been documented
previously.

Future Approaches for the Advancement of Legionella
Diagnostics

Legionnaires’ disease is an underappreciated, mostly sporadic ill-
ness. This poses a serious challenge and highlights three significant
approaches that are key to addressing legionellosis in the coming
decades; these approaches include (i) employing all available, re-
liable diagnostic tools (286); (ii) improving existing assays; and
(iii) developing new technologies that offer increased sensitivity,
specificity, availability, and/or efficiency. The diversity of speci-
men types and availability of laboratory test platforms enable (and
warrant) multiple, simultaneous detection strategies. Toward this
end, several groups have assessed the “added value” of a coordi-
nated approach for the detection of Legionella. They found overall
increases in diagnostic sensitivity and specificity by employing
more than one complementary assay (e.g., a combination of PCR,
culture, UAT, and/or IFA assay) (335, 344, 578).

Most current clinical diagnostics for LD were developed and
commercialized in the 1980s and 1990s (http://www.fda.gov/).
Among them, card- and ELISA-based UATs were widely adopted
by clinical laboratories, leading to increased detection and report-
ing of LD but with a bias toward recognizing L. pneumophila sg1
infections. A dramatic decrease in the use of culture methods for
Legionella identification was also observed in the same time period
both in the United States and abroad. A combination of these
trends has potentially led to the underrepresentation of LD caused
by non-sg1 legionellae. As mentioned above, within the past 6
years, two additional FDA-cleared Legionella UATs were mar-
keted in the United States, with sensitivities comparable to those
of existing assays. Additionally, at least 5 apparently equivalent
Legionella UATs were developed and sold abroad (Table 4). While
different test formats (e.g., dipstick/card/lateral flow) may in-
crease choice and help lower laboratory costs, no significant im-
provements in detection efficiency or test sensitivity have been
realized for alternative Legionella serogroups or species. At least
two in-house, validated, broad-spectrum Legionella EIAs have
been described (579, 580), but the only promising development is
the discovery of a genus-wide common immunodominant anti-
gen in legionellae, peptidoglycan-associated lipoprotein (PAL)
(581–584). To date, one company has applied research toward a
potential pan-Legionella rapid ICT (SD Bioline Legionella) using
this antigen. Despite an initial negative review, this ICT was com-
pared favorably to the Alere BinaxNOW Legionella UAT for Lp1
diagnosis; however, further evaluation is needed to assess its po-
tential for non-sg1 disease diagnosis (309, 585).

Neither FDA approval nor clearance is required for in vitro di-
agnostic tests developed and implemented within a clinical or ref-
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erence laboratory (although other regulatory considerations ap-
ply, e.g., CLIA). However, not all laboratories have the time and
personnel resources for in-house assay development. In the
United States, commercially available in vitro diagnostic tests
must have FDA clearance and therefore represent a prevalidated,
“ready-to-use” system for the identification of disease-causing
agents. Nucleic acid-based molecular diagnostics offer rapid, ac-
curate results for CAP etiology and are available for many disease
agents; unfortunately, only one Legionella species NAAT has been
FDA cleared, but it is not commercially available. A simple, inex-
pensive, FDA-cleared NAAT for most disease-associated Legion-
ella species, based on proven PCR or emerging technologies such as
LAMP, would greatly empower health care providers and laboratori-
ans who currently rely on tests of prohibitive length or cost or of
limited specificity.

Since 2004, respiratory infections represented the largest hu-
man disease category worldwide and one of the leading causes of
mortality (586). Legionella is among the top nonzoonotic atypical
agents of severe respiratory illness, and successful disease resolu-
tion requires swift treatment together with rapid diagnosis for
informed and accurate antibiotic management and epidemiolog-
ical awareness. Traditional techniques, such as culture and serol-
ogy, will continue to offer value for research, epidemiology, and
typing purposes. Despite clear challenges, the future of Legionella
and legionellosis detection in the 21st century is promising; novel
molecular approaches increase sensitivity, ease of use, and effi-
ciency, while existing assays are updated to recognize a wider spec-
trum of pathogens. Ultimately, all facets of Legionella research and
education will lead to better surveillance, enable earlier disease
diagnosis, and decrease the LD burden.
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